RNA jest kwasem rybonukleinowym zawierającym podobnie jak DNA pięciowęglowy cukier, resztę kwasu fosforowego i cztery zasady azotowe, z tym, że zamiast tyminy występuje tu uracyl tworzący, podobnie jak tymina, komplementarną parę z adeniną, zaś cukier jest rybozą nie zaś dezoksyrybozą, jak w DNA. RNA jest też w przeciwieństwie do DNA jedno-, a nie dwuniciowy. Znaleziony w cytoplazmie RNA, nazwany później transportującym, mógł przyłączać do jednego ze swych końców aminokwas. W przeciwległym rejonie cząsteczki znajdowała się natomiast eksponowana trójka nukleotydów, stanowiąca tak zwany antykodon, który był w stanie rozpoznawać kodon właściwy dla przyłączonego do tRNA aminokwasu. Wykrycie tRNA stanowiło wspaniałe potwierdzenie słuszności postulatów hipotezy adaptorowej. Okazało się, że każdy aminokwas ma swój własny, specyficzny tRNA. Bardzo ważnym odkryciem było również wykazanie, że bezpośrednim nośnikiem informacji genetycznej oddziaływającym z tRNA jest inny rodzaj kwasu rybonukleinowego, również obecny w cytoplazmie, dla którego J. Monod i F. Jacob z Instytutu Pasteura w Paryżu zaproponowali nazwę: RNA informacyjny — mRNA od angielskiego messenger RNA. Tak jak wszystkie rodzaje RNA, mRNA syntetyzowany jest na matrycy jednej z nici DNA. Stanowi zatem dokładną, komplementarną kopię zapisu w DNA. Przepisywanie informacji z DNA na mRNA, czyli tak zwana transkrypcja, jest procesem enzymatycznym, katalizowanym przez enzym: polimerazę RNA. Procesem transkrypcji zajmujemy się szczegółowo nieco dalej. Mimo iż jego zasada: przepisywanie z DNA na RNA jest prosta, relacja między DNA, transkrypcją i syntezą białek zawiera wiele złożonych elementów związanych głównie z regulacją tych procesów.

Jeżeli w DNA znaczenie mają poszczególne trójki, to rozpoczęcie czytania odcinka od pierwszej litery daje zupełnie inny zestaw słów niż ten, który powstanie, gdy czytanie rozpoczniemy od drugiej litery. Ponieważ struktura DNA jest całkowicie regularna, a jednocześnie sekwencja zasad zupełnie dowolna, nic nie nadaje się w nim do pełnienia roli przecinków. Z tego powodu od początku właściwie zakładano, że kod jest bezprzecinkowy, ma natomiast zawsze ustalony początek czytania. Na przełomie lat pięćdziesiątych i sześćdziesiątych Francis Crick, Sidney Brenner i ich współpracownicy wykonali w Cambridge serię bardzo pomysłowo zaplanowanych doświadczeń genetycznych, które pozwoliły na ustalenie ogólnych właściwości kodu. Informacja genetyczna odczytywana jest od pojedynczego, ustalonego punktu w ugrupowaniach zasad, które nie nakładają się na siebie — zatem kod jest nie nakładający się. Poszczególne słowa kodu są stałej wielkości i zawierają najprawdopodobniej po trzy zasady — jest to zatem jednolity kod trójliterowy. Trójki nonsensowne, to jest nie kodujące aminokwasów, zdarzają się stosunkowo rzadko. Większość spośród 64 możliwych trójek koduje aminokwasy. Innymi słowy musi się zdarzać, że niektóre aminokwasy kodowane są w DNA przez więcej niż jedną trójkę — tego rodzaju cechę Crick zaproponował nazwać zdegenerowaniem kodu. Początek lat sześćdziesiątych przyniósł zasadniczy przełom w biochemicznych badaniach nad mechanizmem przekazywania informacji genetycznej i nad kodem. Z chwilą ugruntowania się poglądu, że nie istnieje bezpośrednie «oddziaływanie między DNA a aminokwasami, rozpoczęto poszukiwanie cząsteczek pośredniczących, postulowanych przez Cricka.

Zamiana jednego aminokwasu w białku, szczególnie zamiana na aminokwas o podobnym charakterze chemicznym, może odbić się tylko nieznacznie lub wcale na aktywności biologicznej białka. W przypadku enzymów zmiany w centrum aktywnym mają oczywiście inną wagę niż zmiany w pozostałej części cząsteczki. Typowym przykładem mutacji polegających na zamianie zasad są zamiany pojedynczych aminokwasów w hemoglobinie ludzkiej, wykryte w różnych miejscach kuli ziemskiej. Nietrudno zauważyć, że zmiany powodowane przez tego rodzaju mutacje mogą się nagromadzać w DNA. Jedną z typowych zmian powodowanych w DNA przez czynniki mutageniczne jest powstawanie nowych wiązań kowalencyjnych między zasadami pod wpływem promieniowania ultrafiołkowego. Dimer pirymidynowy uniemożliwia prawidłowe parowanie się zasad. Podczas replikacji takiego miejsca nastąpiłby w nim nieuchronnie błąd w kopiowaniu matrycy zawierającej dimer. Usunięcie dimeru nastąpić może albo dzięki tak zwanej reakcji foto- reaktywacji (np. w komórkach skóry), podczas której enzym zwany fotoliazą rozczepia, pod wpływem światła widzialnego, dimery z powrotem do monomerów, albo też, pod nieobecność światła, w procesach tak zwanej reperacji ciemnej. O ile fotoreaktywacja naprawia zwykle efekty fotochemicznego sprzężenia pirymidyn, o tyle procesy reperacji ciemnej naprawiają oprócz tego również zmiany powstałe w łańcuchu DNA pod wpływem mutagenów chemicznych. Tych ostatnich jest bardzo wiele, a każdy rok działalności gospodarczej człowieka wydatnie zwiększa ich stężenie w atmosferze i hydrosferze ziemskiej.