Obok fuzji komórek, w czasie której dochodzi do połączenia się całych genomów, przeprowadza się również transformację za pomocą wyizolowanego DNA. Procedura transformacji pozwala na wniknięcie do komórki biorcy tylko niewielkich fragmentów genomu dawcy, zawierających co najwyżej kilkanaście genów. Ponieważ zarówno fragmentacja dłuższych odcinków DNA, jak i rodzaj pobranego przez komórkę fragmentu są w zasadzie wydarzeniami losowymi, pierwsze doświadczenia z transformacją dawały wyniki zupełnie przypadkowe. Ulepszenie metody transformacji komórek stanowiło właściwy początek rozwoju dziedziny, którą dzisiaj nazywamy inżynierią genetyczną. Postęp dotyczył przede wszystkim metody kontrolowania fragmentacji DNA. Zwykle bardzo trudno jest uzyskać z komórek DNA w stanie całkowicie nienaruszonym. Ze względu na wielkość cząsteczek ulega on przede wszystkim degradacji mechanicznej. Długie włókna DNA pękają łatwo w czasie wydmuchiwania roztworu z pipety, zbyt energicznego mieszania itp. Kolejnym niebezpieczeństwem są obecne zawsze w tkankach enzymy trawiące DNA — nukleazy. Uwolnione z komórek podczas homogenizacji atakują i przecinają DNA. Zanim więc rozpocznie się kontrolowaną fragmentację DNA, którą notabene przeprowadza się również za pomocą nukleaz, tylko specjalnie dobranych, trzeba mieć pewność, że wyizolowany preparat jest w minimalnym stopniu uszkodzony. Dostarczanie komórkom bakteryjnym pofragmentowanego w sposób kontrolowany DNA z wybranego źródła, jako materiału do transformacji, można wprawdzie uznać za udział człowieka w konstruowaniu nowych kombinacji genowych jednak jest wciąż kwestią przypadku, które fragmenty bakteria pobierze. Nie jest to więc jeszcze inżynieria genetyczna w pełnym tego słowa znaczeniu.

Materiał genetyczny wirusa stanowi przecież ze względu na dołączony do niego represor barierę dla normalnej transkrypcji gospodarza zachodzącej w tym odcinku chromosomu. Przerywając ciągłość transkrypcji i zmuszając do zaczęcia jej od nowego miejsca, prowirus wpływa na tworzenie nowych, nienaturalnych jednostek transkrypcyjnych. Rzecz to wcale nie obojętna dla komórki, może bowiem prowadzić do zasadniczej zmiany sposobu jej funkcjonowania. Jest wielce prawdopodobne, że efekty takie mogą mieć groźne następstwa dla organizmu, w skład którego wchodzi komórka. Wystarczy na przykład, by nowy system zorganizowania transkrypcji powodował uaktywnienie poprzednio zablokowanego w zróżnicowanej już komórce systemu replikacji. Z drugiej strony, w długiej historii ewolucji na Ziemi wstawki z genów wirusowych mogły się nieoczekiwanie okazywać bardzo przydatne dla gospodarza, stanowiąc dlań świeży materiał w korzystny sposób uzupełniającyjego własne geny. Ta ostatnia idea ma wśród biologów coraz więcej zwolenników. Uważają oni, że wstawki genów do funkcjonujących chromosomów zdarzały się często w ewolucji i przyczyniały się w istotnej mierze do wzbogacenia ich zawartości informacyjnej. To wzbogacenie dotyczyło nie tylko bezwzględnej liczby genów, ale i nowych kombinacji ich liniowego ułożenia na chromosomie. Oczywiście koncepcja ta nie wyklucza bynajmniej doraźnie niekorzystnego efektu wstawek, który opisaliśmy poprzednio. Źródłem wstawek chromosomowych mogły być nie tylko infekujące komórki wirusy, ale również fragmenty innych chromosomów i przypadkowo pobierane do komórki fragmenty DNA. System wstawek DNA, zwanych również insercjami, znamy już dość dobrze u prokariontów.

Największe znane wirusy mogą zawierać w swoim DNA od 200 do 300 genów. Jak na skromne wciąż możliwości analityczne biologii molekularnej są to już bardzo skomplikowane układy. Wirusy średniej wielkości, np. bakteriofag lambda lub T4, zawierają po kilkadziesiąt genów. Zupełnie małe wirusy, np. należące do DNA-wirusów 0X 174 i FI, zawierają do kilkunastu genów. Jeszcze mniejsze od nich są to najmniejsze z dotychczas poznanych wirusów — bakteriofagi zawierające RNA, i np. R17, F2, QB. Ich RNA liczy niewiele ponad 3000 nukleotydów, a więc wystarcza do zakodowania zaledwie 4—5 białek średniej wielkości. Wystarczy porównać tę liczbę z około 5000 genów (jest to przybliżony szacunek) znajdujących się w genomie bakterii Escherichia coli| by zdać sobie sprawę z tego, jak bardzo ograniczona jest zawartość informacyjna tych struktur. Białkowe otoczki wirusów, zwłaszcza małych wirusów, składają się zwykle z niewielu rodzajów białek. Jest to oczywisty wymóg wirusowej ekonomii. W kwasie nukleinowym wirusa nie ma. po prostu miejsca na zakodowanie większej różnorodności białek. Otoczki wirusowe budowane są więc z wielu kopii kilku podstawowych podjednostek białkowych. Białka te muszą oczywiście ściśle do siebie pasować, co więcej — właściwie rozpoznawać jedno drugie tak, by sekwencja ich aminokwasów z góry determinowała specyficzne tworzenie z podjednostek właściwej struktury otoczki.

Zbadanie całkowitej sekwencji zasad w DNA wirusa pozwoliło ustalić relacje pomiędzy odcinkami kodującymi poszczególne białka. Tak więc białko określone jako D kodowane jest przez sekwencję zaczynającą się od nukleotydu 390 i kończącą się na nukleotydzie 848. W tym samym odcinku od nukleotydu 568 rozpoczyna się sekwencja dla białka E, która kończy się na pozycji 843. Podobnie matryca dla białka A zaczyna się od nukleotydu 3673, przechodzi przez końcowy na mapie nukleotyd 5375 i kończy się na nukleotydzie 136. Matryca dla białka B zaczyna się natomiast od pozycji 5063 i kończy się na pozycji 51. Dane te pozwoliły nareszcie wyjaśnić zagadkę polegającą na tym, że liczba nukleotydów wyliczona z ilości aminokwasów wszystkich znanych białek 0X 174 przewyższała całkowitą liczbą nukleotydów w DNA faga. Przykład 0X 174 pokazuje, jak zasadnicza dla stabilności wirusa w przyrodzie jest górna granica jego wymiarów. Przy okazji przekonaliśmy się raz jeszcze, że Natura ma niewielki szacunek dla praw, reguł i definicji, za pomocą których usiłujemy ją poszufladkować. Wciąż jeszcze nie wiemy, czy geny kodujące więcej niż jeden polipeptyd występują wyłącznie w świecie małych wirusów, czy też spotkamy je kiedyś również i w organizmach komórkowych. Każdy wirus ma swój cykl rozwojowy. Cyklem namnażania się wirusa nazywa się okres w jego historii od wniknięcia do komórki gospodarza aż do opuszczenia jej w postaci wielokrotnych kopii. Na ogół komórka ginie w wyniku dopełnienia się tego cyklu. Z chwilą wniknięcia do wrażliwej komórki gospodarza kwas nukleinowy wirusa zaczyna pełnić swoje funkcje matrycy. Jeżeli jest to DNA, ulega on zarówno replikacji — w celu wytworzenia potomnych cząsteczek wirusowego DNA — jak i transkrypcji.

Wspominaliśmy już, że jeden z najważniejszych etapów regulacji procesów komórkowych zachodzi na poziomie transkrypcji. Regulacja ta obejmuje cykl procesów od przepisania informacji z DNA aż do wyprodukowania cząsteczki mRNA mogącej służyć w translacji. Wiemy już, że DNA niesie w sobie informację zawartą w genach struktury oraz w genach regulatorowych. Informacja genów struktury nie zawsze wykorzystywana jest non stop. Gdyby tak było, to jest gdyby w komórce powstawały bez przerwy i z jednakową szybkością wszystkie kodowane w jej DNA białka, geny regulatorowe nie miałyby czego regulować. Liczba białek każdego typu byłaby jednakowa bez względu na potrzeby. Tak jednak nie jest. Realizację informacji w DNA komórkowym można w wielkim uproszczeniu porównać do czytania książki w miejscach, w których tkwią zakładki. Problem regulacji transkrypcji, jak zresztą wiele innych podstawowych problemów biologii molekularnej, zbadany został najlepiej w bakteriach. Wiemy już dlaczego. Bakterie stanowią po pierwsze układ niepomiernie prostszy od eukariontów, po drugie są materiałem umożliwiającym precyzyjną analizę genetyczną. Trzeba się jednak od razu zastrzec, że niezwykle interesujące mechanizmy regulacyjne, poznane już u bakterii, najprawdopodobniej nie mają równie podstawowego znaczenia w regulowaniu transkrypcji w organizmach jądrowych.